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ABSTRACT

The nonlinear development of disturbances in stratified shear flows (having a local Richard-

son number of value less than one quarter) is considered. Such modes are initially fast grow-

ing but, like related studies, we assume that the viscous, non-parallel spreading of the shear

layer results in them evolving in a linear fashion until they reach a position vhere their

amplitudes are large enough and their growth rates have diminished sufficiently so that am-
plitude equations can be derived using weakly nonlinear and non-equilibrium critical-layer

theories. Four different basic integro-differential amplitude equations are possible, including
one due to a novel mechanism; the relevant choice of amplitude equation, at a particular

instance, being dependent on the relative sizes of the disturbance amplitude, the growth rate

of the disturbance, its wavenumber and the viscosity of the fluid. This richness of choice of

possible nonlinearities arises mathematically from the indicial Frobenius roots of the govern-

ing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by an

integer. The initial nonlinear evolution of a mode will be governed by an integro-differential

amplitude equations with a cubic nonlinearity but the resulting significant increase in the
size of the disturbance's amplitude leads on to the next stage of the evolution process where

the evolution of the mode is governed by an integro-differential amplitude equations with a

quintic nonlinearity. Continued growth of the disturbance amplitude is expected during this

stage, resulting in the effects of nonlinearity spreading to outside the critical level, by which

time the flow has become fully nonlinear.

tThis research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-19480 while the three authors were in residence at the Institute for Computer Applications
in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681.
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1 Introduction

This paper extends the theories of Churilov & Shukhman (1988) and Goldstein & Leib
(1989) to the case of (non-marginally) unstable stratified flows. Such flows, in which the
vertical density variation is insufficient to overcome the strongly destabilising effects of the
vertical velocity variation, occur naturally in many situations. The mathematical formulation
of this problem has great similarity with, amongst others, that for the related problem of
buoyancy-driven instabilities above a heated plate and with the, at first sight, less physically
related problem of vortex disturbances driven by wall curvature occurring in 3D boundary
layers. Thus, whilst here we concentrate solely on a particular model stratified shear flow, the
mathematical theory has much wider applications to both geophysical and aerodynamical flow
situations.

The stratification of a shear flow is usually characterised by a physical parameter called the
Richardson number (herein after denoted J); it is a measure of the ratio of vertical density
variation to the scale of vertical velocity shear. The Richardson number can be both positive
and negative; the former case corresponding to lighter fluid lying above heavier fluid, and the
latter case corresponding to the lighter fluid lying below. The stability of a stratified shear flow
was first considered independently by Taylor (1931) and Goldstein (1931). They concluded that
a multi-layer system of homogeneous fluids can not be used to approximate the stability of a
heterogeneous fluid, and that for the flow models considered, the flow is stable for Richardson
numbers greater than one quarter.

The flow model adopted in this paper was introduced by Drazin (1958); the vertical ve-
locity and density distribution are represented by hyperbolic tangent and exponential profiles,
respectively. This model enables an exact solution of the governing linear stability equation,
the Taylor-Goldstein equation, for neutral disturbances and the same upper bound on the
Richardson number is found. Soon after Drazin's paper appeared, Miles (1961) presented
several theorems concerning properties of solutions to the Taylor-Goldstein equation. In par-
ticular, he proved the two important results that in general flows are stable for J > 1/4 and
that neutral modes are proportional to just one of the associated Frobenius series near the
critical level. The continuation of the linear eigenfunctions in the neighbourhood of the critical
levels was considered by Koppel (1964).

Several linear results for the alternative Holmboe model were computed by Hazel (1972),
for a variety of boundary conditions; however, our interest herein is in the nonlinear critical-
layer theory and not with a discussion about which model is superior. Around the same time,
nonlinear studies started to appear eg. Maslowe (1972) using the equilibrium critical layer
theory of Benney & Bergeron (1969). Subsequent nonlinear studies were also mainly for the
marginal instability case (0 < 1/4 - J < 1) eg. by Maslowe (1977) who considered a viscous
critical layer, and by Brown & Stewartson (1978) who considered a time-dependent critical
layer for small time. These two theories were unified by Brown, Rosen & Maslowe (1981). The
latter paper was corrected to some extent by Churilov & Shukhman (1987); soon after, Churilov
& Shukhman (1988) essentially extended and corrected the work of Brown & Stewartson (1978)
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and Churilov & Shukhman (1987). Recently, Troitskaya (1991) has considered nonlinear effects
for J > 1/4.

There have been many more studies of (non-stratified) shear layers, in which there is no
vertical density variation. The linear stability of such flows is, in general, governed by the
familiar Rayleigh equation, to which the Taylor-Goldstein equation reduces for zero Richard-
son number. The nonlinear stability of such flows has received much attention over the past
couple of decades. Benney & Bergeron (1969) developed the so-called equilibrium critical layer
theory; here the mode is treated as 'quasi-steady' inside the critical layer as well as outside
it. Nonlinearity affects the jump imposed across the critical layer and hence leads to modified
results for the neutral (equilibrium) modes. Haberman (1972) extended the theory to include
critical layers where viscosity is also significant. The first studies of non-equilibrium critical
layers include the papers by Stewartson (1978), Warn & Warn (1978), Hickernell (1984) and
Gajjar & Smith (1985). The key paper by Hickernell (1984) concerned a shear layer affected
by Coriolis (rotational) effects; here the weakly nonlinear theory leads to an integro-differential
equation rather th~n. the (previously) more familiar Landau equation with 'polynomial' non-
linear terms. In fact, such integro-differential equations result naturally from non-equilibrium
nonlinear critical layer theories when the shear layer is coupled with other physical factors such
as, for instance, Coriolis effects (eg. Hickernell, 1984; Shukhman, 1991); compressibility effects
(eg. Goldstein & Leib, 1989); three-dimensionality effects (eg. Goldstein & Choi, 1989; Wu
et al, 1993); and buoyancy effects (eg. Churilov & Shukhman, 1988). Moreover, in a related
paper (Blackaby, Dando & Hall, 1993), we demonstrate that such an integro-differential type
of equation can be derived to describe the nonlinear evolution of the inviscid G6rtler modes
studied by Bassom & Hall (1991). However, the case of a 'simple' shear layer, not affected
by any additional physical factors, is a special case in the sense that it does not lead to an
integro-differential equation; instead, Goldstein & Leib (1988), found that the nonlinear evolu-
tion of a disturbance was governed by the full unsteady nonlinear critical-layer equations. This
difference is due to the additional physical factors, of the former cases, resulting in stronger
singularities of the inviscid disturbance quantities at the critical level.

At first sight, it appears that weakly nonlinear theories can only be usefully applied to
marginally unstable flows; they rely on small growth rates and so the unstable disturbance of
concern must be near to a neutral state. Thus, it was believed that such theories are of no
use in describing the initial evolution of 'far-from-neutral' unstable modes. However, several
recent studies have derived integro-differential equations, using weakly nonlinear theories, to
describe the nonlinear evolution of (general) unstable modes on a variety of shear layers (see the
previous paragraph). These studies are based on the assumption that, in actual physical flow
situations, shear layer spreading or other external changes/effects would result in the otherwise
relatively unstable modes having their growth rates diminished in real terms, so that a weakly-
nonlinear critical-layer theory becomes appropriate; in fact, we adopt the same argument for
this present study. The general proposal/argument is supported by the findings of Michalke
(1964), Crighton & Gaster (1976) and Hultgren (1992).

In this study, we use the unsteady critical-layer and weakly-nonlinear theories to describe
the nonlinear development and evolution of unstable linear disturbance modes on stratified
shear flows where the Richardson number J takes values less than one quarter. In particular,
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we consider the temporal evolution of two-dimensional (2D) modes on Drazin's (1958) model
flow; we note however that the analysis can easily be modified for the spatial evolution case
and/or a different choice of model flow. In addition to not complicating the analysis, the choice
of considering only 2D disturbances is justified by noting (i) the model flow is also only 2D, and
(ii), that Squire's theorem holds for such flows where Boussinesq's approximation is used (see
Koppel, 1964). Perhaps the main assumption made, in this first such study for J < 1/4, is that
the Reynolds number of the flow is large enough such that the critical layer is not significantly
affected by viscous effects to the orders considered. Such an assumption appears justified based
on our results.

Although this paper is solely concerned with the nonlinear evolution of (non-marginally)
unstable stratified shear flow which has important geophysical applications, the actual initial
motivation for the study was the authors' desire to develop a theory to describe the nonlinear
evolution of the inviscid G5rtler modes considered initially by Bassom. & Hall (1991), and lately
by Dando (1992), Blackaby & Choudhari (1993). The first two of the above papers demonstrate
that in the presence of a relatively weak cross flow, longitudinal vortex disturbances of all
wavelengths are stabilised such that the inviscid modes possess some of the largest growth rates
whilst also being neutral at" certain other wavenumbers. Their governing equation is similar
to the Taylor-Goldstein equation which, as mentioned earlier, governs the linear stability of
stratified shear flows. In fact Blackaby & Choudhari (1993) have illustrated the close connection
between the two problems and propose a definition of a generalised Richardson number for
such centrifically-driven instabilities. The ideas developed here in this paper also have obvious
applications to inviscid modes in flow above a heated plate, similar to those considered by Hall
& Morris (1992).

Whilst different from the approach adopted in this study, there are alternate/complementary
nonlinear theories that have been developed recently in which two or more of the flow distur-
bances mutually interact. Such theories generally require smaller disturbance amplitudes but
may also need the disturbances to exist in specific 'configurations'. These other theories are
generally referred to as wave/wave and vortex/wave interactions. For a discussion of wave/wave
interactions and resonant-triads the reader is directed to the book by Craik (1985) and the pa-
pers by Goldstein & Lee (1992), Wu (1992). Strongly nonlinear vortex/wave interactions were
first looked at by Hall & Smith (1991) and their ideas were clarified and extended by Brown,
Brown, Smith & Timoshin (1993). Dando (1993) has looked at this type of interaction in a
heated boundary layer where both streamwise vortices and inviscid travelling waves are present.

The format of the rest of the paper is as follows. In the next section we present some
background details of the flow concerning us in this paper, namely the stratified shear flow
model due to Drazin (1958), as well as introducing some notation and concepts ready for the
proceeding sections. In §3 the flow outside the critical layer is considered; whilst in §4 we
consider the flow inside the critical layer. In §5 we discuss the range of validity and solution
properties of the evolution equations. Finally, in §6 we draw some conclusions.
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2 The stratified shear flow model

Following Churilov & Shukhman (1987,88) we choose to consider the simple but realistic
stratified shear flow model of Drazin (1958), where the unperturbed velocity in the x direction,
uo, and the density, p0, are dependent on the vertical coordinate y (in fact uo = tanh y and
P0 = POc - y). The governing equations of motion in the Boussinesq approximation can then
be written in the form a r

t-•A -- J -p + {JA, 0} = i•AWO,

T- + f { 0} = icAp, (2.1a, b)

where {a, b} = (Oa/,x)(19b/Oy) - (Oa/ay)(ab/Ox); 0 is the stream function; p is the density; 77
the Prandtl number; re the thermometric conductivity and J the Richardson number.

The shape of the stream function of a two-dimensional disturbance mode of the inviscid
linear problem, denoted tP1) say, is found to satisfy a Taylor-Goldstein equation of the form

L1,0 1) = 0, (2.2)

where the operators L, have the form

L1  Oa2  )2 2sinhysech3y (
ay 2  (tanhy - c) (tanhy - C)2

Here k and c are respectively the wavenumber and wavespeed of the infinitesimal distur-
bance, whilst the index I corresponds to the harmonic being considered (see later). Note that
the L, are singular where tanh y = c; at such locations, usually referred to as critical levels, the
assumptions employed in the linear inviscid approach are no longer valid and special attention
must be paid. Thin regions around such levels, usually referred to as critical layers, must be
introduced into the mathematical model; such layers are generally the first to 'feel' the effects
of increasing disturbance amplitude.

Drazin (1958) found neutral eigensolutions of the form

0(- = BO.'(y), 0,.(y) = sinh'-k2 ljy sech y,

with c=0 and J= k2(1 -k 2 ), (2.4a - d)

satisfying (2.2) coupled with the boundary conditions 0t( -1-) 0 as y ± +oo. Here the ± on B
are related to vertical position with respect to the critical level at y = 0 i.e. y > 0 and y < 0
respectively. The relationship between the amplitudes B+ and B_ will follow from matching
to the inner problem (cf. Miles, 1961). In fact, in §4 we shall find that B_ = i- 2"B where
we have written B =_ B+ and the Frobenius root v is defined below.

For later convenience, we introduce the quantity

v 1 _- 4 J; (2.5)
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note that, unlike Miles (1961), we choose to include the "±" in our actual definition of v -

this is also done for convenience. It easily follows from (2.4,5) that for Drazin's model flow
V = 1/2 - k2 and thus the appropriate root is immediately determined. However, for general
flows, an analytical solution is not possible and the relevant choice of sign for given k, c and J
can only be determined by inspecting the shape of the eigenfunction obtained from a numerical
solution; however, there does appear to be a common pattern between location on neutral curve
and which sign in (2.5) is appropriate (see Blackaby & Choudhari, 1993). Note that 'half' of
Drazin's neutral curve corresponds to the positive choice of sign and the other 'half' to the
negative choice (see Figure 2.1); moreover, note that Drazin's solution is also valid for J < 0
which corresponds physically to buoyancy driven flows. For J < 0, it appears that the "_

option is always relevant; thus the eigenfunction also is singular at the critical level.
A study of the fundamental and other low harmonics outside and inside the critical layer

is necessary to derive the desired amplitude equations; in the next section we consider the
flow outside of the critical layer. Here the details are dependent on the flow model under
consideration, but the method is quite general and can be applied to other flows. In §4 we shall
see that the critical-layer analysis is almost entirely independent of the stratified shear flow
being considered.

3 Outside the critical layer

We consider a wave of sufficiently small amplitude in the neighbourhood of a general point
(J, k) on the neutral curve of Drazin (1954) (see Figure 2.1). Note that, since we are not
considering the initial evolution of a mode on a marginally unstable flow, we are not restricted
to the sole case J = 1/4. In fact, we begin by allowing J to take any value < 1/4 (i.e. we choose
to exclude the special case J = 1/4), and then see which values of v - v(J, k) require special
attention later. Note that J 96 1/4 for all but one point on each of Drazin's and Hazels' (1972)
neutral curves; moreover, the generalised Richardson number is always negative for neutral
inviscid longitudinal vortices in 3D boundary layers. In fact, the theory of this and the next
section can be regarded as the extension of the work of Churilov & Shukhman (1988) to the
case v 0 0, i.e. to a far wider range of problems. At the outset, we also choose to exclude the
special case J = 0, which corresponds to a flow with no stratification (this case is considered
by Goldstein & Leib, 1988).

Following Churilov & Shukhman (1988), we introduce the small parameter c, characterising
the magnitude of the mode. It is also necessary to introduce the 'slow' evolutionary time r = pt,
with p also small i.e. the amplitudes B.j appearing in (2.4a) are considered to be functions of
r. Note that although the time-scale r is slow with respect to the inviscid timescale t, it is
still much 'faster' than the timescale t r.-I of the viscous spreading of the base shear flow,
provided

K '( 1);

this restriction is not severe due to the large size of the Reynolds number Re - r-a for flows of
practical interest. Later we shall have to relate the small parameters K, E and p to one another
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so that we can balance the linear terms of the amplitude equation with possible nonlinear ones.
We write

J = J0 + PJA, (3.1)

where J0 corresponds to a general point on the neutral curve and J1 < 0 is order one. The
streamfunction and density are expanded as Fourier series in x,

00 
00

ln(coshy) + E 0'((r,y)ei"'T, P = POC - y + E PI(r,Y)e ikx, (3.2a, b)
1=-c0 1=-0o

with boundary conditions
01, pi -- 0 as y -- -±oo. (3.3)

In the present study, we need to consider the fundamental, the zeroth harmonic, the second
harmonic and the third harmonic. Equations (2.1a,b) are solved both outside and inside the
critical layer and then these solutions are matched to obtain the evolution equations. Outside
the critical layer the fundamental harmonic dominates the perturbation and has an amplitude
of order e. The other harmonics are the result of self-interactions, with the zeroth and second
having amplitudes of order c2 and the third of order c3.

3.1 The fundamental harmonic

In order to derive the evolution equation, the following terms of the expansion

,= /,() + E/L4 2) + •/,3) +.., (3.4)

need to be considered. Here 441) is the neutral mode of the inviscid linear problem; 042) takes
into account the r-dependence of the solution; and 043) is a correction to 441) for dissipative
(viscous) effects. The corresponding pi expansion includes analogous terms. Thus

441) = B-(r)O.(y) where tP.(y) = sinh+"j yljsechy; (3.5a, b)

we note that
SB.,(r)ly1l2", as y --+ 0. (3.6)

The second term in the expansion (3.4) satisfies

Lp42) = Q1, 02) -- 0 as y -+ ±4-, (3.7a)

where

Q1 hB*O/. -2iO - OB+, A ' (3.7b)
tanhyktanhy Or csh y Ta-n "h

The solution can be considered to be the sum, 442)= 4l(2) + 0 (F'2) of a particular integral
of (3.7), 42Vr: say, and the complementary function, t(F2) say. As y --+ 0, it follows from Taylor
(1931) that

1cF - B*a•2IJI+"(1 + O(1)) + B±b(2PI- (1 + O(jyI-1)), (3.8)
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where ak and b• are constants as yet undetermined. Note that if the Frobenius roots -I
differ by an integer then (3.8) is no longer appropriate (logarithms are needed). As such cases
(v ; m integer) are isolated, we choose not to concern ourselves with them (and their

immediate neighbourhood) in this paper.
A solvability condition for the above boundary-value problem (3.7) is required. Note that:

(i) the operator L, is self-adjoint away from the critical level y = 0, and (ii) the right-hand side
is singular at y = 0. Rather than closely follow the method of Churilov & Shukhman (1987)
for deriving the modified solvability condition, for J 0 # 1/4 it is more convenient to adopt the
related approach employed by, for instance, Hickernell (1984).

The solvability condition is derived by multiplying both sides of equation (3.7a) by 0, and
integrating over all y, excluding the (sole) critical layer at y = 0. After integrating by parts;
imposing the boundary conditions at y = ±oo; and the asymptotic forms of 0. and l,(2) as
y --. 0, we find that

00•, M.,2 . .2' 0.1+ 2v { 2 k(2) n2 •2)•
ik.Q, dy = - [(B,¢FP• - F o B .+* + B ,b(?), (3.9a)

where the bar through the integral sign indicates that the finite part of the integral should be
taken. After substituting for Q, and using the relations B_ = i-l-2vB, B+ - B (to be derived
in the next section), the solvability condition becomes

4 k os(rv) + tan('V) = -2vB(b (2)_ i-42)), (3.9b)
k +7 2T1 L1+ 1-J~J

where

c = hsinh2• + th 2  dy and I2= osinh U-1 ydy. (3.9c, d)

Four relations involving b( and b(2 are determined from the inner problem considered in
the next section, thus determining the possible evolution equations for the wave amplitude
B(-r).

3.2 The zeroth, second and third harmonics

The presence of these terms is due to the process of harmonic generation, i.e. due to
nonlinearity the fundamental of O(e) generates the zeroth and second of 0(02 ) and so on. The
zeroth and second harmonics are expanded in the form

ko -- 2(1}) + C2,p(o2) + e•'p4( 3 ) +'", (3.10)

1P2 = eC¢4,) + 0+ 4 +. (3.11)

and similarly for po and p2. It is only necessary to consider the first term of the third harmonic,
namlely namy3 = C303() +", 

(3.12)
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and the similarly for p3. The resulting sets of equations from expansions (3.10-12) do not have
-imple exact solutions when Jo -• 1/4; however it is, in general, a relatively simple process,
if a little tedious, to deduce their asymptotic forms as the critical level is approached. The
significant terms of these asymptotes are quoted in the next subsection.

However, the first term of the second harmonic requires extra attention as it can lead to the
largest nonlinearity in certain circumstances when v is positive (see §4). The necessary analysis
is simply the generalisation of that for the case v = 0 (J = 1/4) presented by Churilov &
Shukhman (1987) in their unpublished Appendix B. Since this important work is unfortunately
not readily available for reference, we take the liberty of presenting, in Appendix A of this
paper, more details of their method than we would otherwise.

3.3 The asymptotic expansions as y --+ 0

In terms of the new variable Y = #-ly and the functions

01 = 01- (1 + 2v)pi, (3.13)

where pi = -20p 1 /iy, the asymptotes for the fundamental, second, zeroth and third harmonics
as y ---+ 0 are

- + i~ + Zv d j I Yvb(2B:,IyIl-
+l = fA+2 [B±[ya½+B -- + nIil-] b B[Y½-

2k4v 2) 0_ +

+CPC-]+ '1 48k {rq(5 - 2v) + (1 - 2v)}B~i 3+

+d:LIYIi+" +...- ,

L IYI½ -" I+&# , L J, B ) I+ "
01 -p+. + Cle, I"[ (I- 2P) tYVl-"] + qii12 v-JiB + 2v) i]'

+ i(r- 1)(1 - 4V2 )B, IYIv+(1

8k Y 3 ] + (3.14a,b)

S 1-+2& [(1 + 2Y)B2 IYl..1+2+] (iyil" + + )

122(3-2v) Y 2  + - +/2

J+,B2B92.jyjjI + (2111Bvh 2*IYI 4 - +
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2 PJ B2 jyj1+2L'02 = IP-1+2,,0 _ f P, +1B IY2,
• -~ 2v(3 - 2v) y 2

2- 1)(1 -4vL 2 )B IY2 +2v i 4vc+
4k B+ + F- - 2v)

_1E2P+j, 2 4v
- 2 +B~kh2± (I j 2)Il-+" (3.15a, b)

(1- 2v)11

&00 2 -1+2t, (1 + 2v) 401BJI2 IYIl+ 2v' +
ar2 O9T Y2

4 .2 1_+2v.0 - C2 2v J_, 1lB+I2 YIl+ 2v

OT 1A 2v OT Y2

+•2 ,- 4 +2 v ( -4v2)(1 - 2v)(,7 - 1)IB±I2 IyI ] +., (3.16a, b)

_ _•+3•,(1+2v)(1-2v) B3

2(3 + 2v)2 lylI-3 "

03 -- C3 A-1+3v''O +[

(3.17a, b)

Note that above, for the sake of brevity, we have only included the more important and
illustrative terms with regard to our aim of deriving amplitude-equations for B. It should be
noted that the above asymptotes, in general, only contain the leading term (for Y -- oo) at each
order. Further, it should also be noted that these (incomplete) asymptotes may, depending on
the relative sizes of c, K and p, be disordered as written; it is sensible to postpone a discussion
concerning the relative sizes of these quantities until §5, when the sizes of the competing nonlin-
earities are known. Here d+, c± and q, are constants, as introduced by Churilov & Shukhman
(1988); the first two are in fact expansions, each term of an order yet to be determined. The
constants g2* and h2* are defined in Appendix A of this paper.

It is worthwhile to consider these asymptotes a little further. We see that the leading terms
in the O-expansions are all zero; in fact, such behavior is in full agreement with the theorem
of Miles (1961). In the next section, we shall see that this fact results in the 'biggest' cubic-
nonlinearity not contributing to the amplitude equation; the same result is also found when J =
1/4 (v = 0) and is responsible for the quintic nonlinearities occurring in the evolution equations
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derived by Brown & Stewartson (1978), Churilov & Shukhman (1988) and in this paper. As
pointed out by these previous authors, for a 'contributing' jump, it is in general necessary for the
0-asymptotes to be non-zero. They note that this condition is satisfied if the complementary-
function terms in the ¢2 asymptote are non-zero (thus resulting in a 'contributing' quintic
nonlinearity). Churilov & Shukhman (1988) also note that if viscosity effects are included in
in the original formulation of the problem, then the above condition is satisfied as long as the
Prandtl number r7 : 1 (thus resulting in a 'contributing' cubic nonlinearity). In addition to
these two so-called symmetry breaking mechanisms, it is clearly obvious from the third term
of (3.14b) that we have an additional mechanism for non-zero v, namely non-zero Ji. This
novel mechanism is made possible by the two Frobenius roots, 1/2 ± Ivj, not differing by an
integer. As far as the authors are aware, such a nonlinear, non-equilibrium critical-layer has
not been the subject of any previous studies. This 'new' mechanism is essentially responsible
for the 'non-viscous' cubic jump term in our later amplitude equation when v is negative (later
referred to as the 'Ji-cubic' term).

The fourth symmetry-breaking mechanism possible here corresponds to that cleverly identi-
fied by Churilov & Shukhman (1987) in the unpublished Appendix B of their paper. Ironically,
there is no mention of it in the sequel paper (Churilov & Shukhman, 1988); however, it is of
lesser importance for disturbances of marginally unstable flows (see later for an extended dis-
cussion 3n where each of the four possible nonlinearities in the evolution equation for B are the
most significant). The important thing to note at this stage is that the term involving h2± in
the 02 asymptote is not at one of the orders to be considered, in §4, for the preceding term in-
volving c2±. In the next section, we shall see that this symmetry-breaking mechanism provides
the 'non-viscous' cubic jump when v is positive (later referred to as the outer-complementary-
function [OCF] cubic term).

4 The Critical Layer

As usual in such nonlinear studies, the main purpose of this section is to calculate the
second relations between b( and b(2) (the first being given by the solvability condition, (3.9b))
and thereby obtain the desired nonlinear evolution equation(s) for the disturbance amplitude
B(r). Following Brown & Stewartson (1978) and Churilov & Shukhman (1988), we define new
functions %P, P and 4 where

A= 22 + T, p p=po--pY-2`-'PY, t= T- (1 +2v)P. (4.1a - c)

Inserting these into the governing equations (2.1), (2.2) gives

1= (1 - 2v)OX - A- 2 {fy, •} I 2 )J ( - O + 7MAW'Iyyy, (4.2a)
i ~~(1 +2v

-AJ 1  ('I1J - O) + KJf 3 Oyyy + (, - 1)KP_'IPyyy, (4.2b)

10



where {a, b}* = aby - ayb., the operator

Nx +Y g • - XFX, (4.3)

and it is assumed that cp-3 <« 1 i.e. viscous effects are not large enough to affect the operator
Nx at leading order.

In the rest of this section we proceed to solve equations (4.2) for the relevant lower order
terms of the lower harmonics. In fact, we need to consider the cases v > 0 and v < 0 separately;
this is because the largest 'non-viscous-in-origin' cubic term in the corresponding evolution
equations is different in these cases. When v < 0, this term is proportional to J1 ; but when
v > 0, this term is related to the complementary function of the second harmonic of the inviscid,
outer problem. Note that when v > 0, the second and third terms of the 01 asymptote (3.14a)
are ordered and thus the cubic nonlinearity proportional to J1 would be insignificant compared
to that proportional to b(. Note that the other two significant nonlinearities (a cubic, due to
viscosity, and a quintic, due to complementary function terms of the critical layer solution for
the second harmonic) are possible in either case.

(i) The case v < 0

The solution is again constructed in the form of a Fourier series in z; we expand the
fundamental, zeroth, second and third harmonics, respectively, as follows

= +... + e14-+3"I 2 ) +-.. + 1 +.-. + -...

+CU; 3,,Q4)+ . + f+ 3 .. x.) K + IE Kj 2 1~~ + ... +I 5 fl+ 5 1"(, +

+2 = 1+2 ... + -2 2v•p( 2) +... + E2A-4+2 •I(3) +. .. + 4 +•-..,

2 = f2 A1+2PP) + + + ... + f + f. 4p*A
4 + 4 YTi7 +...,

I3 = 3v-P(1 ) +'",

(4.4a - d)
and similarly for the 0j's. These expansions are not necessarily completely ordered (depending
on the sizes of e, x and p); moreover, only those terms crucial to deriving the evolution equations
have been included. The scalings follow directly from the outer asymptotes (3.14-17) and/or
by considering the process of harmonic generation.
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4.1 O(EpqA+) of the fundamental

Upon writing

N- -r ikIY a-

we find that at this order equations (4.2a,b) give
Nl,½+•1, '(1 -2v)ik,0(), Nr , (

= - 2v(ik" 1 ', Ni1,(2vI)( 1  
- 0 . (4.6a, b)

A solution of these equations which matches to the outer solution (3.5) is

120) _ W(r Y) = ( +2)r( +2 )i-J t2 T-
47rk+t)e-ktdt, (4.7a)

*() - 0, (4.7b)

where the contour C is shown in Figure 4.la. The function W(r, Y) has a single asymptotic
representation in the lower half-plane (-wr < argY < 0)

W(r, Y) = B(r)YI+v + O(Y-I+"), as IYI --- 00. (4.8)

Later we derive evolution equations for the amplitude B(T) but for the moment we can regard
it as an arbitrary function that satisfies the requirement B(r) --- 0 as T --+ -oo. Matching with
the 'outer' asymptote (3.14a) yields

B- = i-1-2vB+ (B+ a- B); (4.9)

this result has already been referred to and used in the previous sections.

4.2 O(C2p-1+2v) of the zeroth harmonic

At this order equations (4.2a,b) yield

--- (o')' = ik(WW - WW')', a--(1)'- (4.1Oa, b)

where the overbar again denotes the complex conjugate and prime denotes differentiation with
respect to Y. A solution of the above which matches to the outer solutions is

1 2 2  0(0) (4.11a,b)

12



4.3 O(E2 l-'+2") of the second harmonic

At this order equations (4.2a,b) yield

=ik(1 - 2v)4(1) + ik(WW" _ W'2 ) and N2,(_)(I) (4.12a, b)

We note that, as the right-hand sides of (4.12a,b) do not involve W, T(1) and 4(l1) have
unique asymptotic representations as IlY --+ 0 (in the lower half plane of complex Y) of the
form

@( (1 + 2v) B2y + (m )Y +, +1) +4 1 r_, +...
"2(3 - 2v) 2 2 2 (1 - 2v) "

(4.13a, b)
Matching with the asymptotes (3.15a,b) requires that c± = c2p-i+3vc±i, so that cl+ = m2

cl- = iF1+2hm•1), p2 ,c 1+q+ = ni) and p211cl.q_ -q-2-nl(). These lead to the relation
cl-(q- - i-4"q+) = 0. However, as the adopted model flow is symmetric, q+ = q- and so, for

SO, C1- -- 0 1 2n(m). Thus
2(1) - 0 (4.14a)

and the solution to (4.12a) is

I _1, i1-6lVkl' -2 (1 + 2V) 2 r 2 ( + V) 00
2 327r 2  Ic dt 1  dt2 Jo dtB(T-t-tj) x

B(r -t -t 2)(tqt 2 )--(t 1 -t 2) 2(t1 +t 2 )½+L(2t+tl +t 2 )-1-ve-ikY(2t+tl+t2). (4.14b)

4.4 O(E3p 1-+3v) of the fundamental

From (4.2a,b),

N",(+,) %(2) - ik1(1 - 2v),6(2 ) + k(_ )'- +2)")'

= 0. (4.15a, b)

Due to the earlier 4 terms being zero, the right-hand side of (4.15b) is also zero. Thus
e(2)V, where e(2) is a constant and V satisfies N1,(½_I)V = 0 with the asymptotic representation

V , yF- as JYJ --+ oo. Any non-zero choice of e(2) in (4.15a) results in a Y2- term in the
asymptotic representation of ij42) and this contradicts the theorem of Miles (1961), from which
we know that the expansion of 0b as y -- 0 cannot involve a term proportional to y½-. Thus
it follows that 0(2) - 0.

13



We also note that the right-hand side of equation (4.15a) contains W and so T( 2) does
not have a unique asymptotic representation as IYI -- oo. However, because the asymptotic

representation of T( 2) does not contain a term proportional to Y2", it is impossible to obtain

non-zero b( at this order. Thus the strongest nonlinearity does not contribute to the evolution
equation.

The solution for i142) is needed for later calculations regarding the quintic nonlinearity; the
solution of (4.15a) is

= 2 k2 + 2v d± v)

B(r - t - tl)B(T- - t - - t - -3 - t2) (- t - t-t2)-2-

(t[tI(tI - t 3 )2 + t 2 (t 2 - t 3 )2 + tlt 2 (2t 3 - tx- t 2 )] - t+ 2 (t2 + t2)-- +

_t 1 1 v ~~3 v t 2 ~l-2
(tI -t2)1,"(t, +t2 +6)(26z-tl-2)F --- -t 2,4 -

(4.16)

Here H(x) is the so-called Heaviside function:

H(x)= {1 : > 0

and F(a, b; c; z) is the hypergeometric function (see Erde1yi, 1953; Abramowitz & Stegun, 1964).

4.5 O(q.+v) of the fundamental

A major difference of our problem for general v, compared to the v = 0 case considered by
Churilov & Shukhman (1988), is that there is no linear contribution to the evolution equation
from the critical layer. This can be seen from the analysis of this and the next subsection.

At order qpi+V terms proportional to J1 first enter; equations (4.2a,b) yield

Sr4t(3.) 2ikJ1
=+1 (1 - 2v)ik• 3G) 1 +2 W

-- ¢1- 2i1J+
p1 W, (4.17a, b)

which have solutions
qV(3a) JW in(py), 0(3a) = J1W (.8,b

2v v(1 + 2v)" (4.18a, b)

Note that for definiteness, we choose to include the complementary function alongside the
nonlinear term which is going to be balanced with at this order.
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4.6 O(qph-") of the fundamental

Here we find that (4.2a,b) yield
Nl(• v) =b (. - 1)i• 3b) /% (3b)

= - 2v)ik4 ,N ,_)b = 0. (4.19a, b)

These have solution
I(3b) = 0, 4 (3b) _ 0, (4.20a, b)

where once again we shall include the associated complementary function alongside the non-
linear term which is going to be balanced with at this order. The solutions (4.20) imply that
the whole of the linear contribution to the evolution equation comes from outside of the crit-
ical layer; note that the logarithm occurs in (4.18a) and not in (4.20a) i.e. any jump induced
by the presence of the logarithm does not occur at the desired order, O([P2 ), necessary to
affect the relationship between b(2 and b). The authors have verified that this is in fact the

case by computing 'near-neutral' linear growth rates from a numerical solution of the Taylor
Goldstein equation (2.2) and comparing them with those predicted analytically by equating the
right-hand side of expression' (3.9b) to zero.

4.7 O(e2Op2 ) of the zeroth harmonic

At this order we only need to calculate q(02); (4.2b) gives

a 0 -2) ikJ1  (WW - w),(4.21)
'97- 0 (1 +2v)

with solution (o2) - 2aJ1  a1  +(o1).(22

Sv(1 + 2v)2  1w 'I - v(1 + 2v) 0 (4.22)

4.8 O(E 2 p 2 .') of the second harmonic

Equations (4.2a,b) yield

N 2 1 . =2) ik(1 - 2v)•+2) ik(W"+I43 ) 2W'T(3a)'+ WI4a)") 4ikJ ,

N () = - J+ik - ilcJ (1 +2
-(1.+,2) (WW" - W'W') 4(I + 2v,) 2 (4.23a, b)

For further calculations only $62) is needed; using the identity N2 ,(½+.) - N2,(½_•) - 4ikv and
comparing the right-hand sides of (4.12a) and (4.23b) it is easy to deduce that

2 (I - 21 21) (4.24)
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4.9 O(E3,M-+3Lv) of the fundamental

At this order the cubic-jump proportional to J1 emerges. The governing equations yield in
concise form

N J,+')()•il= 1 (1 - 2v)ikHI(4) (12) + (2) + R

(-) 2 ) kJ1 + 2) R+ R (4.25a, b)

where, in particular,
R(4)= ) )'+ 2-a 10 V,3a)) ,,1) -(3o),,,(1), +- +)"W- 2 )'--W)

R2 ikJ(b1 %P_21 T D 42W
(ikJ1 -) 2W"1) + W'40)' - W (R1)" + '1'I)"W + O()'v/) (4.26)-v(1 + 2v) (2 ~ + 2W

To derive an evolution equation the asymptotic representation of T,4) is needed. This is

14)= c(4))y½+ + D( + O(Y-½+') as Y -t-e+ , (4.27)

where, in particular,
O(4)- (4) i½2-Yk½-,, i-V (4(rt >e

D DL - I)F( /CdY.Jdt t2 R24 ( ,).kt (4.28)

Note that the term proportional to T(2) in (4.25b) only contributes to the jump C+9 - c_.
After substituting for p44) and some calculation, we find that

() _O(4) il-4vk 3-4 ,,Jl(1 +2v)r 3 (1 + V) _dt
2 32 -2L( - v) IC dJ C d2JIC 3 (1 2 t3 )

(B(r + t, - ta)B(T + t2 - t3 )-B(r + tI + t2 - 2t 3)t 2t3 (t3 - t2)(t 3 + t, - t 2)x

(t3 - ti - t 2)'7"H(t3 - tI - t 2 )

+ (I + 2v) 00 OdtB(,r + tl + t - t3)B(-T + t2 + t - t3)77(T + ti + t2 + 2t - 26) X
4 1

(tI - t 2)2(t 1 + t 2) 4 +`(2t + tl + t2)--;`(2t3 - 2t - tI - t2)x

(2t + tl + t 2 + t 3 )(t 3 - 2t - ti- t H( - 2t - - t2 ))

Matching the 'inner' asymptote (4.27) with the 'outer' asymptote (3.14a) leads to the rela-
tions D (4) = L(2) D(.4) -1-2 '(2) r

- Ul++, D- =I v )B-,

which combine to give ( - ( L) - (4.0
D+ )- D(-- = B--VI"+ut' - bi-4"( '-J, , (4.30)

where the subscript J1 denotes the cubic part of the total jump which is proportional to J1 .
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4.10 O(e3p-3') of the third harmonic

At this order the governing equations yield

N 3 (+)I4z1) =3ik 2)4 1

N,(I.+"),( = k(1+2v)43(z') + ik('Q1 ")W - 3'( 1 )'W'+ 2'1@ 1)W"),

,(j-,) = 0. (4.31a, b)

The right-hand sides do not contain W and so have a unique asymptotic representation. Match-
ing with the solution outside the critical layer gives 1(1) = 0, whilst solving (4.30a) gives

1 i.-11P k-3-(1 + 2 r)2r2(½ + V) oo f
"j2- 1-V 2r( - -2) 2 dt I dt fdt 2  dt3B(r - t - t,)x

B(- - t - t 2 )B(7 - t - t 3 )tl t2 3 2 (t1 + -

(t, + t2 + t3)½+-(3t + t1 + t 2 + t3)-'-"(tl + t2 - t3 )(tx + t 2 - 2t 3)xV1 2F( - V_1 - _,;'3 4 _; e-ikY(3t+tl+t2+t3)H(tl - t2). (4.31c)

4,- 2 4 2 t2.(43c•1

4.11 O(E4 p- 4+4V) of the zeroth harmonic

At this order it is only necessary to determine 6(7). Equation (4.2b) gives

- 0, (4.32)

which has the solution 0(0)' = f(Y). However, choosing a non-zero f(Y) is merely equivalent
to taking a different density profile for the unperturbed flow and thus, without any loss of
generality, we choose to take f(Y) = 0 and -6(7) = 0.

4.12 O(C4p- 4+4v) of the second harmonic

At this order the equations (4.2a,b) can be written in the form
N2 " -•(') ik(1 - 2,),W"v) ikRN =- ik(R +- R0 2 + 1?3),

,(|+R02 + R31),

N2-,_"), 0, (4.33a, b)
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where
R11 = (wT" - 2W' + w" i 2)). R02 - 2(IqV1)"IP() - o,(1)'q(') (

andI n3, -PO (3"O 1)- WIP)"). (4.34a - c)
and R 31 = (3WT341 - 2W 3 W )

Following Churilov & Shukhman (1988), Q (7) is written as the sum q(7) = T(7) + T1(7 of

a particular solution (N2(,+I 2N= ikRN) and a gerieral solution, '2L, of the associated
homogeneous equation. Defining

coo (x, k) = xk-(r(x)i3(-,)
27r

we find that
0 = 2 -2A o(1/2 - v, 2k) fC t-2+vC(r - t)e-iktYdt,

L= coo(1/ 2 + v,2k)J C2-- D(r - t)e-2 ikYdt

2v) Coo(1/ 2 - v,2k) t-+"C(r - t)e-2iktydt, (4.35a, b)
4',

where C(r) and D(T) are arbitrary functions which tend to zero as r --- -oo, and the y-2'

factors have been added for later convenience. As Y --+ +co,

,@(7) = M- Y½+- + O(y-!)2N22V

where

Mi-M.+2(2k)2+ Io dY I dtRN,(r- t, Y)t½+•I-e2k #0. (4.36)
(1 + 2v)F( +) f) 0 o

Thus the asymptotic representations of @ (7) and t(7) have the forms
(7 2, I- 2v)r)y_ 2 "

2(4) = [D(r) + M*(r)]Yl+" - IA 1 4v+
,qý( ) = ,- 2t c, y ½ • + . .

2(7 -~2C(,r)yi-L + - .

(4.37a, b)

To match with the solution outside the critical layer, in (3.15) it is necessary to set c± =

f4p-1+3sc 2±, leading to the relations

C2+ = i-2vC2- = C(T), c2+q+ = D(r) + M+(r) and c2-. q- = i+2,[D(r) + M_(r)].

Upon setting q+ = q = q-, we find that

i-1-v 2

C(r) = 2q csc(T)(M+-M_), (4.38)

and, as M+ - M_ # 0, this fully determines 447) # 0. Thus, the symmetry t = 0 has been

broken and a 'jump' will occur at the next order in which 4) appears in the right-hand side
of the equations. The explicit form of M+ - M_ is given in Appendix B of this paper.
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4.13 O(ep--+5,v) of the fundamental

At this order, the governing equations are

,( i+'VI = - 2v)O(T) +

N ( )2 1 2  1 + 2 11)',I,0)') _ikF47 ). (4.39a, b)

The asymptotic representation of qI47) has the form

%p(7) C(- Y½+ + Y½-V + O(Y-½+V),

where, in particular,

D)- D (T =JdY I ' f t(dtt41D(7)( - t, Y)ek (4.40)

+ 2vr(i - ii) f00oo

From (4.7a) and (4.35a),

i-22 k(1 - 4v2 ) cos(iV) L d2 Jdt~ +vt-(tI -t)-ikY( 2 t-t2)C(, -t)-(r- t)

(4.41)
and simple manipulations give

(7• (TI 20 •-kl--(1 - 2v,),r-l
D(T+ D-) = Cqj t2-C(T - t)-(,r - 2t)dt, cq =vr( - vr(+ - t)d (4.42a, b)

- v)F + 1)( -- _

The quintic contribution to b2 is found by matching the above asymptote with the outside
expansion of the fundamental near the critical layer. This process yields

D( - D_7) = B(bl+ ib-4'2)q, (4.43)

where the subscript q denotes the 'quintic' part of the total jump. From (4.38),(4.42) and (4.43)
we obtain

.B( 2) i- 2). -t- c WV .

B(L()--b)2q 2 A Rcsc(-7) ti+"[M+(r"-t)- M_(r-t)]-B(r -2t)dt. (4.44)
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4.14 The cubic nonlinearity due to viscosity

The remaining terms in the expansions (4.4), proportional to 1, are driven by dissipative
(viscous) effects. They are not of major concern in this paper but are included for completeness;
the equations which they satisfy, their solutions and further analysis can be found in Dando
(1993) (see also Churilov & Shukhman, 1988). Providing the Prandtl number is not unity, an -zr upn(6) (6) [(6) (6)]o + [(6) n(6) (l 1-3v
non-zero jump, D+ - D_ = [D - D_ +[D+ - D 2 say, arises at O(.3K/r- +32 ) where

D (6 10 - i- 4vk•5- 4v(1, - 1)r3(l + V)(1 + 2v) 2 Jo dtJ[D+6-D, o=32V72(3 - 2v)r(I - v)" 1C dt C t 1

2 [1 100
B(T - ti + t 2 )(t 1 t 2t 3 )- L( - t2- t3)[ (tl - t 2) 2 [ dt4B(r - 2t, + t 2 + t 3 - t 4 ) x

B(7 - ti + t3 - t4)((1 + 2v)(t4 + t4) - 2(3 - 2v)tlt 2(t 2 - tl)2)

- 2t1 + t 2 + t3)B(T - ti + t 3 )tlt 2 ((t - t 2 )3 - 2t 3 (t, - t 2 )2 + 2t3)]H(t1 - -

and

(D (6 1-4vk5-4v (17 - 1)F 3 (1 + v)(1 + 2v) 3  CO

+ -256vir 2(3 - 2v)r(I - v) IC d 1 C 1c dt10t 3 j d

B ~( - 2t1 + t 2 + t 3 + 2t)B(r - t1 + t 3 + t)B(r - t, + t 2 + t)(t1 t 2 t 3 )- 2 X

(t- - - t3 - 2t)½-'(t3 - t 2 )2(t 2 + tz)½+4 (2t + t 2 + t 3)-;(2ti - t2 - 2t)x

(2t4 + (2t + t2 + t 3 )1+2,,(t 2 - t3 )2 (t 2 + t3)1-2v + (2t + t 2 + t3)4)H(ti - - t - 2t). (4.45a, b)

Matching with the outer inviscid solution requires that

D()- D_) = B(b 2- _-4Lb(2_)", (4.46)

where the subscript v denotes the cubic part of the total jump which is due to dissipative effects.
It is worthwhile to consider the effects of viscosity a little further at this point. At the start

of this section, it was pointed out that we assume x <« p3, so that the effects of viscosity do
not enter the crucial critical-layer operator Nx at leading order. Instead, the effects of viscosity
occur as inhomogeneities at certain lower orders of the hierarchy of critical-layer equations.
This approach is entirely rational as long as /lp3 <« 1. However, to derive amplitude equations
valid over a larger range of x values, one must follow the approach, introduced by Haberman
(1972), of introducing a new parameter, AH say, where

AH = K// 3 , (4.47)
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is taken to be order one during the critical-layer analysis. The operator N. would need modi-
fying:

Nx ---- Nx - 7 A 3H - (4.48)

and hence all the critical-layer solutions would be modified. We have chosen not to adopt this
approach here as it would complicate the presentation of our theory and analysis; whilst it is
not really necessary so long as AH is reasonably small (see Goldstein & Leib, 1989).

(ii) The case v > 0

Clearly the viscous-cubic and the quintic nonlinearities are still possible when v is positive.
Moreover, the analysis and the evolution equations are exactly the same as for the negative v
case. However, when v is positive fpl` > Ak" and the ordering of terms in expansion (4.4a)
strictly needs to be changed so that the term p(3a) is lower order than the term T(3a). It is now
no longer rational to balance the cubic term formed from the 1I43a) term, with the 1143b) term.
Thus, the J1-cubic nonlinearity considered for negative v is no longer a possibility.

There are two other possibilities that we can consider for positive v. Firstly there is the
cubic formed by the * (36) term, balancing with the V(3b) term. However, this among other
things, necessarily leads to the fully nonlinear critical layer problem. Alternately, there is
another cubic nonlinearity ( referred to here as the outer-complementary-function [OCFJ cubic
term) similar to that considered by Churilov & Shukhman (1987) (for unity Prandtl number)
in the unpublished Appendix B of their paper. This cubic nonlinearity was not considered for
negative v as the J1 -cubic nonlinearity is always larger. It arises from considering the part of
the complementary function term in the asymptote of the second harmonic outside the critical
layer (equation (3.15a)) to be at an order fixed by the outside, inviscid problem; rather than
just considering it at orders fixed by the process of harmonic generation inside the critical laver.

It is necessary to consider two additional terms in the (slightly re-ordered) expansions
(4.4), namely terms e2,½-•(Is), q()) in the expansions of the second harmonic and terms
eap_,('1k), t4)) in the expansion of the fundamental.

4.15 O(E2,½ of the second harmonic

At this order equations (4.2a,b) yield

N2,(,+,)'@( 8 ) = (1 - 2v)ikb(5s) + ik(WW" _ W' 2), and N 2 ,(,) 0 (4.49a - b)

The solution for f•s) is written

'0)= coo(1/2 - v,2k) t -+"n 2(r - t)e-2tktydt, (4.50)
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where the function n2(r) is determined below. For large IYI,
68), n 2(T)y 4 _', 8) 2 (s), )y½+ _ (1 - v)n2 (7 )y4_., (4.51)

where m 2 (T) is a suitable arbitrary function. Matching with the expansions outside of the
critical layer yields

92- = i1+2Yg2+, h 2- = il+ 6 -h 2 + and B2 h2+ - (1 - 2v)n2. (4.52a - c)
4v

From the relations (4.52a-c) and (A.5d), it follows that

n2 () = 4i½-"v(a/3 - Oac) sin[ir(1 + 2v)/4] B2(r), (4.53)
(1 - 2v)a, sin(7rv)

and thus as 4(4s) is non-zero, it will lead to a 'contributing' nonlinear jump.

4.16 O(E3y-l) of the fundamental

The governing equations at this order are
S.T~t8)it 

--- ) -- --,,(,+,,)T) = (1 - 2v)ik4DI) + ik(2W 2 W 2 - W ).

N=. @(s) -ik(W4(4 8 )" + 2W'40(s)') =_ -ikF4 8 ). (4.54a, b)

The asymptotic representation of T(8) as Y --- ±0o has the form

I C:S)y½+ + 8)yF_ + o(yI+'),

where, in particular, D(") - DT is given by the right-hand side of equation (4.40) but with
M8s replacing 1q). Simple manipulation gives

Re) = 21+&ik(l - 4v2) cos(Irv) J Jdt2/t(r - t1 )n 2 (r - t2 )e-ik(2t2-tI)Yt 12+ t2j2 (tI - t2 )

(4.55)
and we find that

64iJ+-kI-(1 - 2v)r(( + 00)
D~s) - D - 2P(~ + V)'X ] i<HP(, - 2t)n 2(r- t)dt. (4.56)+ r I )r(I + t) 10

Matching with the outer, inviscid solution requires that

D(s)- D($)-- B(b( -_i-4vb 2.)..Cf (4.57)

where the subscript oef denotes the cubic part of the total jump which is due to the outer-
complementary-function terms.
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5 The Evolution Equations

The four possible forms of the evolution equation for B(r) simply correspond to matching
the solvability condition (3.9b) with each of the four jump expressions (4.29), (4.43), (4.45) and
(4.56) in turn; for the sake of succinctness, we do not explicitly quote these evolution equations.
Instead, it is more beneficial to the discussion here to form one 'composite' evolution equation

2 (l+i,)[ OB+ I2k tan(7rv)B = -2vB(b_-i-4"b(2)

--- -2LB{•2-3+4L/(b( - i-4v())l 2 (-v) + e2pJ--t,+(b( 2) - i-4 (2)

+E2 ,,-L+•. t(b(2) _ i-4,b (2) , + •4,-7+6&(,( 2) - i4 q}_ i-4.b(2)"+ A- "•1+ 1b-/ "V" •" b+ n-qf, (5.1)

where the explicit forms of the nonlinear quantities appearing on the right-hand side of this
equation have been derived, and are quoted, in §4; again H denotes the Heaviside function. As
the composite equation (5.1) contains the sum of the four (individual) nonlinearities, it has the
advantage of being valid for all values of K, c and p that lead to an unsteady (weakly nonlinear
and weakly viscous) critical-layer.

In this section we shall discuss the parameter ranges of validity of each of the four possible
forms of the individual 'base' evolution equations for B(r), before presenting some numerical
results for the 'J1 '-nonlinearity case. This section is concluded with a discussion of the expected
solution properties of the other (base) evolution equations. Further conclusions are drawn in
the next section.

5.1 Parameter ranges of validity

The range of validity/application of each of the possible base evolution equations is sum-
marised in Figures 5.1a,b, for v < 0 and v > 0 respectively; the governing balances determining
the dashed curves separating the three parts of region III follow immediately by comparing the
sizes of the four terms on the right-hand side of equation (5.1). As an example, we note that
(when v < 0) the nonlinearity proportional to J1 is equal in size or larger than the quintic
nonlinearity if c2 r- 3+4v > c 4p-7 +6v i.e. if f < p 2-L. We see that in each case, depending on the

relative sizes of te, and p, three of the four base evolution equations are applicable. Also plot-
ted are the expected evolutionary paths of the disturbance for each case; this shall be discussed
in more detail later but at present it suffices to note that, based on our assumptions concerning
viscous-spreading effects resulting in an unstable linear disturbance mode approaching a later
neutral state, initially our disturbance will lie in the bottom right-hand corner of region IlIb
in each case. This partly justifies our relegation of viscosity to lower order effects, as well as
indicating that the base evolution equations with the J 1-cubic and the OCF-cubic nonlineari-
ties deserve the first attention. In the next subsection we present numerical calculations for the
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former case (v < 0); the evolution equation with OCF-cubic nonlinearity (v > 0) is discussed
in the final subsection.

5.2 Numerical results for the J1-cubic

Recall that if, and only if, v < 0 then a cubic nonlinearity proportional to J1 is possi-
ble. In fact it is the largest nonlinearity in the (composite) evolution equation when /I >» C

and e < p•2-v; thus, as mentioned in the previous section, it corresponds to the first nonlin-
ear evolutionary stage for an unstable linear disturbance whose growth rate is diminished by
viscous-spreading effects. In this subsection we present some numerical results for this case.

To ease numerical calculations the jump expression (4.29) is transformed into kernel form,

D (4)_D4)= ii+ 2 'kk 3-4,Jlr(l + 2v) 0o0 2-4m -- 2

-D- ~~4v2r4 (12 - Vi) ds f a a)(TsBr-sP (la)

= (bl+ "bi-v~2  (5.2a)

where

_~) [f2(.y2-)(_•u (~)(1-2uF) vv ,•v -2v;a; (1 + --- )-

r 2(1+ + 3+),2- 1;
+a(l+ 2 (5 2u)(3-2v)F ( 3 1 a )

8(1- )1 F+ -,+ v, + v,3 - 2v; a;(1

+al+ a!)(5 - 2v)(3 - 2v)(F, 7 )3+ )1 +V3 2  o!-- o

8(1 - v) ( (+

+(1 + o)(1 _ a)-Ux

j ttF-(1 - t)'2-"(1 - t) +3(1dt (1+ t •1 - 2t) + (2-a+at-2a2t)F 1 -V,- 1- v ; 3- V ; 02t2

(1 + at)"+"(l - cr2t)1+1 2 42

(5.2b)

Here F,(a, b, c, d; x, y) is the hypergeometric function of two variables (see Erd6lyi, 1953; Churilov
& Shukhman, 1988). The evolution equation for this case can then be written in the form

OB 1B +-200da2-,1da -,(rB - s)B(Tr - as)IW(-T- (1 + ajs), (5.3)
F= fyB+)2 s jd ~10 L(!)(

where

-J 1I 2k tan(7r'v) Jlk 4-4 7r1l + 2v a
7'= 21 , =8vI'(S -,•cosfw)i and -() =-sgn (1+2)G.

2• (5.4a - c)
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Let us consider the range -2 < v < 0; in Figures 5.2a,b --y1/J 1 and -7 2/J 1 are plotted
versus v for this range. These figures illustrate that both -yl and Y2 are positive in this range
(recall that, since we are considering unstable modes, J1 < 0). The lower value v = -2 chosen
here for this numerical investigation has no special significance, it was principally chosen so
that we calculate numerical results for a complete period of the trigonometric functions present
in the analytical expressions. Note though that, for their study of the related neutral inviscid
G6rtler modes in a three-dimensional boundary layer, Blackaby & Choudhari (1993) find that
this range of v-values is appropriate. Moreover, it may also be argued that for increasingly
negative values of v (corresponding to the Richardson number becoming increasingly negative)
the now destabilising effect of stratification means that the growth rates of the more unstable
linear inviscid disturbances are just too large for viscous-spreading effects to damp significantly,
thus rendering the weakly-nonlinear theory inapplicable.

It is convenient for numerical calculations to introduce a so-called 'logarithmic time' (see
Churilov & Shukhman, 1988; Shukhman, 1991)

T IB012e2-y, (5.5a)T-(2-fi) 4-4m

having set
B(T) = Bob(Tr)"", (5.5b)

where the constant B0 is chosen such that b(r) --+ 1 as r --+ -00. This is done in order to
reduce the number of parameters in the evolution equation. Equation (5.2) now has the form

A oI daK (a) fodXX2-4m e-x(Te-xl'/O+))b(Te-O"T/('+a))-b(Te-•) 5.a
5Tb = 0~ u (5.6a)

with initial condition
b(T = 0) = 1; (5.6b)

where the kernel
01l-2m

K(u) = + a)3-4&,G(a)" (5.6c)

In Figure 5.3 K(o) = K(a; v) is plotted, versus a, for a few representative v values. It is
interesting to note that K(a) is always negative (0 _< a < 1); this appears to be the case for all
-2 < P < 0; cf. the viscovs-jump kernel for the v = 0 (J = 1/4) case considered by Churilov &
Shukhman (1988) which changes sign. Thus it is possible to deduce all the qualitative results
of the solution properties of the 'wolution equation (5.6) from results plotted in this figure (see
the discussion in §5.2). However, we still chose to solve the integro-differential equation (5.6)
numerically for completeness, as well as to obtain actual quantitative results.

In Figure 5.4, we present the results of a numerical solution of the evolution equation (5.6)
for two representative v values. The results show that b(T) oscillates with a fast rising amplitude
as T increases. The period of these oscillations is seen to depend strongly on v: for v values
corresponding to the smaller x 2-4ve-zK(o) values (i.e. v = -0.4) the time T for b to attain a
given large value is longer than for v values corresponding to the larger x2 4 ve-'K(a) values
(i.e. v = -1.4). In summary, the numerical calculations indicate that, for all 0 < v < 2, the
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amplitude B(r) will oscillate, with its magnitude rising sharply after a few oscillations; our
results indicate that no 'finite-time' singularity of the evolution equation (5.6) occurs, instead
the oscillations become increasingly wilder.

5.3 Discussion

We begin this discussion by continuing to consider the evolution equation (5.6) with non-
linearity (solely) due to J1 ; later in this subsection we consider the other (base) evolution
equations. In the last section we reported that our numerical computations show that K(a) is
everywhere negative (0 < a < 1) for all -2 < v < 0. It was remarked that from these facts
(and the magnitude of K - K(or; v)) it is possible to deduce all the qualitative results of the
solution properties of the evolution equation (5.6), without needing to perform the numerical
integration. To illustrate that this is so, let us consider the right-hand side of equation (5.6).
Initially b(T) > 0 and thus the right-hand side of equation is clearly negative (as K(r) < 0);
thus this equation tells us that b(T) will decrease in value until such time when the right-hand
side of equation (5.6) is positive. The latter condition cannot be reached until b(T) becomes
negative. However as the right-hand side of equation depends on all previous b(T) values, there
is a delay until the right-hand side of equation is actually positive; during this period b(T) has
becomes more negative. Once the right-hand side of equation is positive, b(T) grows until it
becomes positive. Again there is a delay until the right-hand side of equation is negative, at
which time b(T) starts to decrease again, and so on. It is clear that the larger the typical
magnitude of the overall kernel x2-4ve-- K(o), the more effect we can expect the nonlinearity
to have i.e. larger oscillations at earlier T-values. Note that we would not expect a singularity
to develop because of the smooth mechanism underlying the behavior of b(T), as described
above. In fact, it is possible to show analytically that the solution of the evolution equation
(5.6) can only develop a singularity if fl K(a)do, > 0 (see Churilov & Shukhman, 1988).

Thus, disturbances initially governed by the evolution equation (5.6) would soon become
so large in magnitude that their evolution would move into its second stage (region IIIc of
Figure 5.1a) where the largest (leading order) term in the composite evolution equation (5.1)
is the quintic nonlinearity. We note that this result is not at all surprising and could have been
deduced as soon as the scales and terms of the critical-layer expansions (4.4a-d) were deduced:
as viscosity does not enter our analysis at leading order, the base evolution equations due to
J1 -nonlinearity, the OCF-nonlinearity and the quintic-nonlinearity will all lead to unbounded
amplitude growth, whether by increasing disturbance oscillations or by a singularity occurring
(they do not permit so-called equilibrium solutions). As viscosity does not enter at leading
order it certainly cannot damp out the amplitude growth. We note that even with stronger
viscosity effects, equilibrium states may still not necessarily be reached (see Goldstein & Leib,
1989). Moreover, we note that for the marginal instability case considered by Churilov &
Shukhman (1988), the nonlinearity due to viscosity permitted singular solutions in which the
amplitude became unbounded at a finite T.
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6 Conclusion

In this paper we have considered the nonlinear development of unstable disturbances in
stratified shear flows where the Richardson number J is less than one quarter in value. Although
such modes are initially fast growing, we have assumed that viscous-spreading effects result
in them evolving in a linear fashion until they reach a state where their amplitudes are large
enough but their growth rate have diminished significantly so that amplitude equations are
derived using weakly nonlinear and unsteady critical layer theories. We have found that four
different (base) integro-differential amplitude equations are possible, including one due to a
novel mechanism (the 'J1 '-cubic nonlinearity). The relevant choice of amplitude equation, at
a particular instance, being dependent on the relative sizes of the disturbance amplitude, the
growth rate of the disturbance, its wavenumber and the viscosity of the fluid. This richness of
choice of possible nonlinearities arises mathematically from the indicial Frobenius roots of the
governing linear inviscid equation (the Taylor-Goldstein equation) not, in general, differing by
an integer. The initial nonlinear evolution of a mode will be governed by an integro-differential
amplitude equations with a cubic nonlinearity but the resulting significant increase in the size
of the disturbance's amplitude leads on to the next stage of the evolution process where the
evolution of the mode is governed by an integro-differential amplitude equations with a quintic
nonlinearity. Continued growth of the disturbance amplitude is expected during this stage,
resulting in the effects of nonlinearity spreading to outside the critical level, by which time the
flow has become fully nonlinear.

We finish by mentioning some further points that may be worthy of investigation; mainly
these are related to the relaxation of the assumptions made here in this paper. Obviously,
the inclusion of viscosity at leading order in the critical layer (i.e. treating AH - 0(1)) would
answer the questions posed in the previous section as to whether it can damp down the unlimited
growth in the magnitude of the disturbances, allowing equilibrium solutions to exist. Another
obvious extension of this work is to three-dimensional disturbances; then it may be possible
to consider interactions between two or more disturbances. Comparision of our theory with
experiments or large-scale numerical simulations is necessary at some point. As mentioned
in the introduction, as well as geo-physical flow applications, the theory has applications to
aerodynamical flow situations. In fact, in a related paper Blackaby, Dando & Hall (1993)
apply the ideas contained in this paper to the problem concerning the nonlinear evolution of
inviscid G6rtler vortices in a three-dimensional boundary-layer; their problem is more complex
than that for the model stratified flow considered here, as the longitudinal vortex problem
is necessarily three-dimensional. The theory developed in this paper can also be applied to
a nonlinear study of the inviscid vortex instabilities in the three-dimensional boundary-layer
flow above a heated plate.
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Appendix A

This appendix contains some additional results, concerning the outer inviscid problem for
the second harmonic, needed for the case v > 0. It is merely a generalisation of the unpublished
Appendix B of Churilov & Shukhman (1987) to the case v 0 0.

Outside the critical layer, the first term of the second harmonic, ;b('), satisfies

L 202( =Q2 - B+sinh2,4+l Iy [Y 4 + J0 4y (A.1)

We introduce the functions f. and fb which satisfy the homogeneous equation L20(1) = 0, such
that

f, = e-kval3l(S + O(e-21y)), fb = e kvTTJ(1 + O(e-21yi)), as y -+ ±oo.

The solution of (A.1) is then written in the form

2(1) = B2 (f(y) + C+f.(y)), (A.2)

where C+ are constants and f is a particular solution of equation (A.1) that does not contain

e*:/Dýkv y1 as y -- 4±oo. As y --+ ±0,
_(1+2,2(3 - 2v) YI-I+2,(l + 0(y2)) + alyl+v(1 + 0(y)) + lyll-,(1 + O(y)); (A.3)

where a and / are to be determined. Also
Sa 2,by (1 + O(y)) + 2-'(1 + O(y)), as y -+ ±0, (A.4)
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where the a.,b and 13 ,b are fully determined by the definition of fo,b i.e. they are determined
solely from the outer, inviscid problem. Thus, we can write

04,) =B:2(1 + 2v) 2+ 2II." 1+OY)
- 2(3 - 2v) jyL-1 +2"(1 + 0(y')) + B', (92gIyI½+ + hzly12-) (1 + O(y)), (A.5a)

as y --+ ±0, where
g2+ = a + C±a,, h2± = 3 + C±fa. (A.5b, c)

It is easy to show from these relations that

[1 - (g2+/g2-)] (.d

h2+ = (h 2+/h 2 -)(a/3 - fla) [(2+/2) ] (A.5d)Qa[(2+/9-) (h2+/h2_)]"

To evaluate a and /f, we subtract the singular term in (A.3) by introducing

_(1 +2v) 1+2 2Y

2(3 = 2v) sinh l+2y II cosh 2  (A.6a)f(Y)= f-2(3 - 2v) Y

so that
(= a•lyl+ + #lyl½-& +..., as y -- ±0, (A.6b)

and 1(y) satisfies
L21 =2 (1- 2v) sinh-1+2 , ( 2 I + 2 (A.6c)

2(3 - 2v) (8 cosh- y n y - (1 + 2v))

Then

] - dzW [f.(y)fb(z) - fo(z)fb(y)], (A.7)

where the Wronskian W = f'f - faf• = 2v(ac3b• - ab#I) = -2kv -+ 3. Considering y --- 0,
we see that

00 Obf --Q2b~zad• o
a = j W(abf 6 - ta~fb)dz and P Q2 (pbf. - flafb)dz. (A.8)

Appendix B

Again following Churilov & Shukhman (1988), in accordance with (4.34), we write

M+ - M- = (M+ - M-) 11 + (M+ - M-)0 2 + (M+ - M-)31 , (B.1)

and after extensive calculations we obtain
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i=7' 1-"-+~ + 2P)L2 (l + v)7r2-i-LJ 2_dtj dt ,, dt ,j dt 2

Lc dt3B(,r - t - t4- tl)B~r - t - t4- t2)B(,r + t + t1 + t2 + t4 - tP( - t - t4- t3)X

(t~~tyi~~~(t 3 - - -2t 4 ~ '(t 3  2 --l - t2

(tltt)241 (t3 - t3) + t2 ( - t)2 + t~ 22t4- t - tl) - t~2)t 2 (t3 2 )v

t3t(t1  - t3)"t + t2 t + t3 (t 3 + tt 2 )(2t3 -ti - 2; I

H(t1 - t 2 )H(t 3 - t - l- t2- 24), (B.2)

(M+-M..) 0 =21+vii5vkI3v~(1 + 2v)L( + i00 dt I.O dti Idt2

Jcdt3 B(,r - t - tl)B(.r - t - t 2)B(Tr + t + ti + t 2 - t)7r- t - t 3 ) (ttO )2+- X

(t 2t 3 ) 42 (t 3 -2t- -t- - 2 ~'1 +2- t2 -(2t + ti + t2) X

(t t +t2F ,- - ; -v.t2) ~t - t 2 )H(t 3 -2t - ti-t 2 ), (B.3)

4 2 4 -2' t2

(M+-) -2 2+i5kFL( + 2)1'+v(0

Jc di.B(-r - t t 3 - tl)B(T - t -1t3 - ti)B(T + 21 + ti + t2 + 13 - t4 )*R(T' - t3 t4)x

- 3 -11 2 - v 2)l(ti + t 2 )-I'-(tt - t 2 )1~

(t4 - 3t - 2t3 )'+V(t 4 - 2t 3 )-I.t - 3t - 2t, - 2t2 - 2t3)(2t4 - 6t - 3ti - 3t2 - 4t3)x

1 v3 v
(t F - - 24 ~4 2 - 12)11(14 - 3t - t-t - 2t 3 ). B4
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Figure 2.1. Drazin's neutral curve, J = k2(1 - k2), with the thick line denoting the part of
the neutral curve with v +ve and the thin line that part with v -ve.
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Figure 5.1a A diagram of the various regimes of the critical layer for v < 0.
I: viscous, steady critical layer; Landau-Stuart-Watson equation.
II: strongly nonlinear, equilibrium critical layer; Benney & Bergeron theory.
IIIa: unsteady critical layer; largest term in integro--differential equation (IDE) is cubic and
due to viscosity.
Illb: unsteady critical layer; largest term in IDE is cubic and due to ,/1.
IIIc" unsteady critical layer; largest term in IDE is quintic.
The thick line on the diagram indicates the expected evolutionary path of the disturbance.
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Figure 5.lb A diagram of the various regimes of the critical layer for v > 0.
I: viscous, steady critical layer; Landau-Stuart-Watson equation.
II: strongly nonlinear, equilibrium critical layer; B~enney & Bergeron theory.
Ilia: unsteady critical layer; largest term in IDE is cubic and due to viscosity.
IlIb: unsteady critical layer; largest term in IDE is cubic and due to OCF.

ii lllc: unsteady critical layer; largest term in IDE is quintic.
S The thick line on the diagram indicates the expected evolutionary path of the disturbance.
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Figure 5.2a The constant -- y1/Ji for -2 < v < 0.
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Figure 5.2b The constant -vy2/J1 for -2 < v < 0.
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